If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-16m+41=10
We move all terms to the left:
m^2-16m+41-(10)=0
We add all the numbers together, and all the variables
m^2-16m+31=0
a = 1; b = -16; c = +31;
Δ = b2-4ac
Δ = -162-4·1·31
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{33}}{2*1}=\frac{16-2\sqrt{33}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{33}}{2*1}=\frac{16+2\sqrt{33}}{2} $
| 1/2/3=3x | | 40=x-4 | | 8(x+10)=16 | | 14x^2-15x-11=0 | | 40=−4x | | 2(3x-12)-5x=-3x(x-12) | | 34=3m+9 | | 6/y=17/5 | | 7/22=x/110 | | 3x+18+5x+6=180 | | 2a+14=3a+6 | | -5x=-10/9 | | 12+3x=4x+9 | | 12-2x=16+x | | 25/x=10/6 | | 4y=18=42 | | 7v/3=-14 | | -7x+5=12x+3 | | 25/a=10/6 | | (x/(5x+16))=0 | | 9=3v-12 | | 8z-6=82 | | x^2-4x-23=-9 | | x^2=–169. | | m+1/33=4m-2/11 | | 7x-5=-12x+3 | | x2=–169 | | x2=–169. | | 7r^2-18=r | | 34m=4m+9 | | a=5=12 | | 20=u/4-16 |